A Thermodynamic Analysis of Mitotic Spindle Equilibrium at Active Metaphase

نویسنده

  • R. E. Stephens
چکیده

The mitotic apparatus of first-division metaphase eggs of the sea urchin Strongylocentrotus drobachiensis was observed by means of polarization microscopy under controlled temperature conditions. Eggs were fertilized and grown at two temperature extremes in order to produce two different sizes of available spindle pool. Slow division time allowed successive samples of such cells to be observed at the same point in metaphase but at different equilibrium temperatures, yielding curves of metaphase equilibrium birefringence vs. observational temperature. Using the plateau value of birefringence at higher temperatures as a measure of total available spindle pool and the observed birefringence at lower temperatures as a measure of polymerized material at equilibrium, the spindle protein association was evaluated according to the method of Inoué. Both pool conditions produced linear van't Hoff functions. Analysis of these functions yielded enthalpy and entropy changes of +55-65 kcal/mol and +197-233 entropy units (eu), respectively. These values for active mitotic metaphase are quite comparable to those obtained by Inoué and co-workers for arrested meiotic metaphase cells. When other equilibrium treatments were considered, the best fit to the experimental data was still that of Inoué, a treatment which theoretically involves first-order polymerization and dissociation kinetics. Treatment of metaphase cells with D(2)O by direct immersion drove the equilibrium to completion regardless of temperature, attaining or exceeding a birefringence value equal to the cell's characteristic pool size; perfusion with D(2)O appeared to erase the original temperature-determined pool size differences for the two growth conditions, attaining a maximum value characteristic of the larger pool condition. These data confirm Inoué's earlier contention that D(2)O treatment can modify the available spindle pool.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pressure-induced depolymerization of spindle microtubules. II. Thermodynamics of in vivo spindle assembly

The present experiments were designed to test whether the simple equilibrium assembly model proposed by Inoué could predict variations in spindle microtubule assembly in response to changes in hydrostatic pressure as it does for changes in temperature. The results were also analyzed according to a model based on nucleated condensation polymerization since this recently appears to be the mechani...

متن کامل

DDA3 recruits microtubule depolymerase Kif2a to spindle poles and controls spindle dynamics and mitotic chromosome movement

Dynamic turnover of the spindle is a driving force for chromosome congression and segregation in mitosis. Through a functional genomic analysis, we identify DDA3 as a previously unknown regulator of spindle dynamics that is essential for mitotic progression. DDA3 depletion results in a high frequency of unaligned chromosomes, a substantial reduction in tension across sister kinetochores at meta...

متن کامل

Regulated degradation of spindle assembly factors by the anaphase-promoting complex.

The ubiquitin ligase anaphase-promoting complex (APC/C) is essential for cell division in all eukaryotes. Loss of APC/C activity arrests cells at metaphase and results in severe aberrations of the mitotic spindle, but how the APC/C regulates spindle formation is not understood. Here, we report that the APC/C promotes the ubiquitination and degradation of four proteins required for Ran-dependent...

متن کامل

A lateral belt of cortical LGN and NuMA guides mitotic spindle movements and planar division in neuroepithelial cells

To maintain tissue architecture, epithelial cells divide in a planar fashion, perpendicular to their main polarity axis. As the centrosome resumes an apical localization in interphase, planar spindle orientation is reset at each cell cycle. We used three-dimensional live imaging of GFP-labeled centrosomes to investigate the dynamics of spindle orientation in chick neuroepithelial cells. The mit...

متن کامل

Altering membrane topology with Sar1 does not impair spindle assembly in Xenopus egg extracts.

Intracellular membrane networks including the endoplasmic reticulum (ER) and the Golgi apparatus experience dramatic reorganization upon entry into mitosis. However, the mechanisms driving these rearrangements and their importance for cell division are poorly understood. The GTPase Sar1 is a component of the secretory pathway and a key activator of anterograde transport of cargo from the ER to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 57  شماره 

صفحات  -

تاریخ انتشار 1973